
Project ISSPROF

Document File ISSPROF - Profiling Whitepaper.doc

Version 1.2.4

Version Date 28-09-2011

Status FINAL

Author António Abreu

Whitepaper

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) DOCUMENT CONTROL - page ii/ii

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 Abstract ... 1

1.2 Target Audience... 1

1.3 What is Profiling? .. 1

1.4 When do you profile? ... 2

2 PROFILING WEBMETHODS IS SERVICES ... 4

3 THE SERVICE PROFILER ... 6

3.1 Main Features .. 6

3.2 Installation and Admin ... 7
3.3 Sample Analysis Tool .. 9

3.3.1 View Per Service ... 9
3.3.2 Code Coverage .. 10

3.4 Extensibility... 11

APPENDIX A GLOSSARY ... 1

FIGURE INDEX

Figure 1 - When to profile ...2

Figure 2 - webMethods IS Service Profiler ..6

Figure 3 - Start/Stop the Profiler..8

Figure 4 - Managing Package Exclusion Patterns..8

Figure 5 - Freeze Snapshot setting...9

Figure 6 - The View Per Service report...9

Figure 7 - Timing display format ... 10

Figure 8 - The Code Coverage report ... 10

Figure 9 - The Code Coverage service usage detail .. 11

Figure 10 - The Snapshot as a Document structure ... 11

Figure 11 - Exporting Snapshot as a file .. 12

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 1/12

1 INTRODUCTION

1.1 Abstract

This document presents an overview of profiling as part of the development/maintenance cycle of

webMethods Integration Server integrations and presents a tool developed by Wrightia to enable

advanced Integration Server service profiling.

1.2 Target Audience

Being a Profiler a development and testing tool the targeted audience is mainly Developers for the

webMethods Integration Server v6.x. However, Administrators and others that may face the

responsibility of keeping a system running with acceptable performance may find the subject of
interest.

1.3 What is Profiling?

The word profiling has its root in the ancient Latin language and mainly means: the drawing of a line
or an outline of a shape.

The profiling concept is generic and commonly used in criminology and psychiatry, where a

personality profile is created from formal summary or analysis of data, often in the form of a graph or

table, representing distinctive features or characteristics.

Profiling: Recording a person's behavior and analyzing psychological characteristics in order to predict or assess their
ability in a certain sphere or to identify a particular group of people.

WordNet ® 2.0, © 2003 Princeton University

In criminology, a profiler is a criminologist who studies a criminal's behavior for clues to psychology to aid in capturing
them.

wikipedia

The same concept, in generic terms, is applied in software development where the goal is to create an

application runtime profile from where a performance optimizing strategic can be outlined and

implemented.

In computer programming, a profiler is a computer program that can track the performance of another program by
checking information collected while the code is executed. A profiler can identify the time used by or frequency of use of
various portions of the second program. Typically this information is used to identify those portions of the second
program that consume the most time. These time-consuming parts are then targeted for optimization. Also a profiler can
be useful for debugging. Like a debugger, it is often used with a front-end (front-ends to profilers are more specific to
each profiler).

www.reference.com

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 2/12

1.4 When do you profile?

In one word: always.

In every stage of the creation of a computer based automatic data processing solution, some form of
profiling is automatically or intentionally being performed. Most of the times, the profiling is done

with tools and techniques that are not identified as profilers and/or profiling.

Architecture Design Implementation

Profiling

Testing

Figure 1 - When to profile

In Figure 1 (above), the main solution build phases are presented, together with the span of the
profiling activity. These phases could be further subdivided, but because those details go beyond the

objectives of the current document, and for the sake of simplicity, they have been collapsed to the

presented four.

The profiling activity starts with the Architecture of the solution, at the hardware and at the software

level. The Architecture will have to layout the adequate solution considering the involved hardware
and software components that match the problem description and its environment.

From Architecture, through Design and Implementation, all need to base themselves on some

solution profiling in order to cope with the specifications, which may incorporate concerns about

performance, reliability, flexibility, management, etc.; and that may have to consider raw information
such as data volumes, day time schedules, number of users, component distribution, etc.

In the Architecture phase, profiling may materialize by outlining the application/solution through the

use of some platform’s out-of-the-box components (e. g., Trading Networks, Broker, Broker
Territory, etc.), standard or widely used technology based implementations (e. g., HTTP, XML, JMS,

etc.), custom developed technology frameworks, more discrete custom developments (e.g.; database

based information sharing) or even some radical and completely new approach.

Design profiling is usually accomplished by performing some architecture exercise at a smaller scale,

identifying the components and cataloguing them individually and into groups by analyzing their

commonalities and specificities. On Design, the profiling of a component will commonly establish a

behavior pattern that matches one that is already known or a completely new or even one that is
specific to the problem domain.

When making the Implementation, the profiling activity decreases very much because most of the

behavioral intentions have already been established by the preceding phases. However, to some lower

degree, the implementation of a piece of working software also include some architecting and

designing which in their own terms will establish a usage profile for it.

In the Testing phase, the resulting implementation is tested for bugs, error handling and against the

established specifications. When there is a discrepancy between the witnessed behavior and what is

expected, some debugging activity will have to take place for diagnosis and uncovering of the

reason(s) for the mismatch.

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 3/12

When the discrepancy is related to poor performance, a Profiler Tool comes handy because the

current application running profile can only be determined by going under the hood while the

application is actually running. This kind of runtime application profiling is the core subject of this
document and is based on collecting information such as:

• Parts being executed;

These can be procedures, methods, etc.

• Running count;

The number of times a certain identified runtime element if accessed.

• Start timestamps;

Timestamp of when the call started.

• End timestamps;

Timestamp of when the call returned.

• Other available useful runtime information.

This is dependent of the running environment.

The analysis of the profile data enables an educated selection for Refactoring of the Services that
should contribute the most to the solution’s overall performance improvement.

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 4/12

2 PROFILING WEBMETHODS IS SERVICES

An Integration Server Service Profiler is intended to help identifying the runtime profile of the

Services in a particular server. Depending on its implementation characteristics, Services can be
classified as:

• FLOW Services;

Services developed using the FLOW language.

• Java Services;

Services developed using Java language.

• C/C++ Services;

Services developed using C/C++ language.

• Adapter Services;

Services that are generated by an Adapter through configuration of one of its Service
Templates.

• Web Services.

This is a subtype of a FLOW service that is generated by creating and configuring a new Web
Service Connector.

• Other.

In the evolution path of the webMethods Integration Platform, new types of IS Services may

be introduced.

Without any dedicated tool, the gathering of information for the IS Services while running can be

achieved by:

• Including statement that write the needed information to some predefined channel (a file, a

database, the console, a document published to Broker, etc.);

This solution is custom and still needs additional software to gather the collected data to allow
you to analyze it.

• Setting the Audit Properties of the Service.

This is a feature native to the webMethods IS Services and needs an Audit Database defined

to persist the Audit Information, which is defined simply by configuring Service properties.

Some DB SQL statements still need to be created to access the persisted information.

Because the usage of the above solutions has itself an impact in the Service performance, during

development they are kept to a minimum or not included at all. This way, when the code is promoted

to a System Test environment, or even a Production environment, and a performance issue

happens, the use of the above solutions mean changing the Services physically. Not only does this

break rules about making changes to code outside the Development environment, but may become a
problem when it comes to removing those changes when the solution is found… how many of them

are there… something may break and a new problem is created.

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 5/12

Ideally, the activity of profiling the Services in a running Integration Server should be a

non-intrusive solution that:

• Is easily installed and removed;

• Can easily be switched on and off;

• Should have a small footprint in the Integration Server running environment;

• Not be itself a noticeable impact on the overall performance.

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 6/12

3 THE SERVICE PROFILER

The Service Profiler is a dedicated and extensible tool for profiling IS Services running in a

webMethods Integration Server.

Integration Server

Service Profiler

Admin

Dashboard

DSP

DSP

CSV

XML

…

Export to File

OMI

…

Interface

Collect Data

Figure 2 - webMethods IS Service Profiler

3.1 Main Features

The Service Profiler has the following features:

• Non-intrusive;

No changes need to be made to the Integration Server, with exception to additional start-up
parameters.

• Easy Install & Uninstall;

Installation is just:

a) The standard installation of an Integration Server package;

b) Copy of a folder contained in the installed package to the Integration Server
installation folder; and

c) Insertion of a sequence of predefined (copied from a separate provided file) shell script

statements in a single specific section of the IS start-up shell script.

d) These statements determine and set the additional parameters for the JVM

command-line.

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 7/12

Uninstalling is a matter of:

a) Deleting the installed package;

b) Removing the extra Integration Server start-up shell script statements;

c) Removing the folder created by copy on installation.

• Small Footprint on the Integration Server;

No changes need to be performed to the Services (audit or otherwise).

No need to set or use an Audit DB, Broker, Monitor, etc. All that is needed is the running
Integration Server.

• Very low impact on Integration Server resources/performance;

The tool uses a very small amount of memory to gather data and negligible CPU time.

• Fine-grained timing data;

While running, Service code take turns to have a chance do any real work in the CPU.

The Profiler gathering of timings for the Service execution goes beyond the simple gathering of

timestamps for elapsed time calculation. The time actually spent in the CPU is also collected.

• Scheduled snapshots;

The generation of profile data snapshots can be scheduled and the snapshots persisted for off-line
analysis.

The saved snapshots can be combined to enable a flexible analysis on multiple time-boxes.

• Simple set of operations;

Start, Stop, Analyze (View a Report/Dashboard), Take Snapshot, Export Data.

• Open to external analysis tools;

Snapshots can be exported to a variety of standard exchange file formats for analysis by external
tools.

Other Integration Server Services can access profile gathered data via a set of public Services.

• Administration pages;

The tools administration and configuration setting are accessed through DSPs (Dynamic Server
Pages) that are part of the installed package, and can be used through a browser.

• Dashboard.

A different set of pages can be accessed to view and drill statistical data being gathered and saved
as snapshots.

3.2 Installation and Admin

The installation must be made with the Integration Server shut down. After starting (see Figure 3,

below) the Integration Server the Profiler must be started before using its functionality. The Profiler
only gathers Service information when started, and when stopped all counters are reset.

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 8/12

Figure 3 - Start/Stop the Profiler

When analyzing data, the number of services can be from just a few to a few hundred or even more.

With a lot of services being viewed it can be cumbersome to visually analyze it when our attention

should be focused on a subset of them.

Because all the services that are running in the Integration Server have their contribution to the

overall performance, none of them is discarded or filtered out at the data gathering part of the tool and

are included in the returned snapshot. However, not all of them may need to be shown in the

dashboard pages. Some of them, because we cannot Refactor them (e. g., those in packages

distributed by webMethods as part of the platform, the one from the Service Profiler itself, 3
rd

party, etc.) may not need to be included in the displayed data.

For this purpose, the Admin page contains a global setting that allows defining which packages (and

their included services) should be excluded from display when showing analyzed data. The exclusion

is defined through a Regular Expression over the Package Name… and it can be tested before

committing (see Figure 4, below).

Define the Regular
Expression you
want to add.

Test the RE by
checking which its
result is.

The list of Package
Names resulting
from the RE is
shown here.

Save it.

The already defined REs can also be
checked and/or selected for removal

before clicking [Save Changes].

Figure 4 - Managing Package Exclusion Patterns

Once the IS Service Profiler starts the profiling activity, it is continuously collecting runtime data.

Therefore, every time a Snapshot is requested it returns with the most recent counters. However,

sometimes it is useful to exercise an analysis over a set of profile data frozen in time (e. g., after

running a predefined set of tests, after a period of time, etc.). For this purpose, the Freeze Snapshot

administrative setting is available (Figure 5, below).

When turned on, the IS Service Profiler takes a snapshot of the current data and holds it as the

response for the next Snapshot requests… while the setting remains on. While the Snapshot is

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 9/12

Frozen the icon will appear on any Analysis Tools pages to give a visual hint of the freshness of

the data shown.

Figure 5 - Freeze Snapshot setting

The Freeze Snapshot is also used when the IS Service Profiler is stopped. As part of the Stop

Profiling procedure, a Snapshot of the current counters is taken and frozen. This way, the rest of the

functionality over the data can still be used over the last known Snapshot.

3.3 Sample Analysis Tool

From the data collected by the IS Service Profiler it is possible to build Analysis Tools that are
views over that data with organization and functionality oriented for broad or specific use.

The IS Service Profiler already includes some of such tools, of which examples are presented in the

next sections. The presented Analysis Tools are not the complete universe of those already available,

and more can also be built.

3.3.1 View Per Service

The View Per Service report (see Figure 6, below) is an example of the kind of analysis tool that can

be implemented around the data gathered from a single snapshot. It reports totals for the data from the
snapshot and presents it per service.

Figure 6 - The View Per Service report

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 10/12

All timing values are displayed in the data format explained in Figure 7 (below) with the leading

zeros suppressed with exception to values smaller than one second.

D HH:MM:SS.mmm

days: Any number

above 0 (zero).

hours: 00 to 23

minutes: 00 to 59

seconds: 00 to 59

milliseconds: 000 to 999

Figure 7 - Timing display format

The report can be refreshed with data for the most current snapshot by pressing the [Refresh] button.

The amount of services listed can be further narrowed by setting a value in the accompanying text box

to exclude Services for which the Own Elapsed Time is less than the value you entered. As all the

other timing values the format explained in Figure 7 (above) should be used, and any leading zeros

are still not needed.

By default, the presented timings are accumulated for the each presented service call count. However,

these may be presented as Averages Times per call, by checking the appropriate checkbox.

The table can be sorted by any of the columns on the Snapshot Details per Service part of the

report, including the Service Type.

3.3.2 Code Coverage

The Code Coverage report (Figure 8, below) is another example of an Analysis Tool.

This one presents a view over the Snapshot data reporting the percentage of Services in a Package

that have effectively been run… while the profile was working.

Figure 8 - The Code Coverage report

The table can be sorted by clicking on the corresponding column header on any of the detail columns,

with exception to the percentage bar.

By default, only Packages that contain Services are listed. Even though this is a reasonable

invariant, the complete list of Packages can be viewed by checking the appropriate checkbox and

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 11/12

clicking the [Refresh] button. All those that do not contain Services are so identified and their

coverage percentage is suppressed. On the other hand, Packages which do contain Services can be

further inspected by clicking on the link over its name. This will jump to a page (Figure 9, below)

where all Services of the Package are listed with an indication of whether is has been run or not.

Figure 9 - The Code Coverage service usage detail

3.4 Extensibility

The Service Profiler core functionality is to gather raw information about the running Services.

From that information, Analysis Tools may be (and are) implemented. However, to avoid limiting

the analysis of the data to the tools included functionality, the Export of the Snapshot is provided.

Figure 10 - The Snapshot as a Document structure

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) page 12/12

A Snapshot is a tree structure (see Figure 10, above) with common information on the root note plus

the entire top-level Services, each of them being a node and with (possible) child nodes in them

representing the Services they called. These child codes can also have their own child nodes in them

representing the Services they called… and so on.

The Snapshot can currently be exported as an XML file or a CSV (Figure 11, below).

Select the File
Type and set its
specific options.

Download (Save As)
the generated file.

Generate the file.

Figure 11 - Exporting Snapshot as a file

Beyond the export as file feature, and closer to the Integration Server environment, the Service
Profiler provides a public interface (API) of Services and Document Types that can be used by any

external IS Service to request Snapshots and process them.

ISSPROF – IS Service profiler

ISSPROF - Profiling Whitepaper.doc, v1.2.4, 28-09-2011 (FINAL) APPENDIX A - page 1/1

APPENDIX A GLOSSARY

Item Definition

Analysis Tool A dashboard view of the Snapshot data organized in a way that reveals relations on the collected data, either interactively or in
the form of a report.

Snapshot A Shapshot is an instant sample of the data structures internal to the Service Profiler.

Time Elapsed This is the absolute time that has elapsed as measured by an external chronograph, or even on your wrist watch.

Time Spent In opposition to Time Elapsed, this value measures only the time the Service was in the CPU doing real work.

The CPU is being used by more than one thread. The scheduler slices the availability of the CPU by giving each thread an
opportunity to run. This value counts the time the Service spend effectively using the CPU.

A Service may have a Time Elapsed much larger that the Time Spent if it is given little opportunity to run. This can be caused by:

• A thread with much higher priority hogging the CPU availability;

• A badly dimensioned system with not enough threads allocated, resulting in an activity of context switching;

• Not enough resources (RAM, network bandwidth, etc.) causing the Service to spend most of the time waiting;

• Etc.

… …

