
Service Profiler
for IS webMethods

These are times where changes happen very fast
pushed by more aggressive competition. In order to
achieve more customer sales or decrease operation
costs most companies are investing in more agile proc-
esses, applications, and technology architectures.

Flexibility of information technologies allows organiza-
tions to continually transform and thrive in a dynamic
environment, but comes at a cost. The IT systems be-
come more complex, harder to maintain and operate.

Those systems responsiveness becomes even more
important and may have a direct impact on business
revenue.

Building systems for performance is mainly an archi-

tectural and design task but the truth is that it is often
overlooked, becoming only visible too late in the de-
velopment life-cycle. That is when a quick and effec-
tive audit of the current implementation, with prag-
matic optimization hints both for short term quick-
wins as well as longer term performance improve-
ments, becomes vital.

In order to help organizations achieve a better under-
standing of the implemented services over the
webMethods platform we have developed the Service
Profiler, this helps you tracking down performance
bottlenecks or dead code, with close to zero runtime
overhead on development, Q&A and production envi-
ronments. 

Key features

 Easy Install & Uninstall - the
installation and uninstall are
simple and straight foreward. The
tool can be made completely
inactive without uninstalling.

 Non-intrusive - no changes need
to be made to either the
Integration Server or the Services.

 Small impact on Integration
Server resources/performance -
the tool uses a very small amount
of memory to gather data and
negligible CPU time.

 Any Service type - the tool works
with all the services available in
the webMethods platform (Flow
Service, Java Service, Adapter
Service, C/C++ Service, XSLT
Service, Webservice).

 Fine-grained timing data - the
values collected for the Service
execution goes beyond the simple
gathering of timestamps, it
actualy records the time spent in
the CPU.

 Simple set of operations - the
operations are very intuitive and
straighforward (Start, Stop,
Analyze, Take Snapshot, Export
Data).

 Open to external Analysis Tools -
snapshots can be exported to a
variety of standard exchange file
formats or be accessed via a set
of public services.

 Administration pages - the tool’s
administration and configuration
settings are accessed through a
browser.

 Dashboard presentation - a set
of graphics ease the reading and
drilling of statistical data gathered
by the tool.

From “Model”, through “Build”, “Test “and
“Optimize” phases, all need to base themselves on
some solution profiling in order to cope with specifi-
cations. These may incorporate concerns about per-
formance, reliability, flexibility, management, etc.;
and that may have to consider raw information such
as data volumes, day time schedules, number of us-
ers, component distribution, etc.

Model — the architecture lays out the adequate solu-
tion considering the involved hardware and software
components that match the problem and its environ-
ment, profiling is materialized by outlining the appli-
cation/solution.

Build— the actual building of the solution takes place
here, profiling activity decreases because most of the
behavioural intentions have already been established
by the Model phase.

Test— after “Build” phase is completed, it is time to
test the solution for bugs, error handling and against
the established specifications. During this phase pro-
filing helps identifying what is causing differences on
behaviour between what is expected and the wit-
nessed results. Another advantage of the Service

Profiler is the ability to identify dead code that could
be removed or rearranged.

Optimize— Once in a production environment, it’s
important to have a proactive role in the identifica-
tion of performance bottlenecks since real live situa-
tions are hard to replicate in a Q&A environment. 

Why is profiling a business need?

What are the benefits for each phase in the application cycle ?

“The capability we now possess with the Service Profiler to quickly
and easily identify all aspects under our solution that could nega-
tively influence its performance allows us to be more efficient in

it’s detection and correction, hence saving us from such efforts in
more advanced stages of the development cycle.”

Dr. João Pedro Silva
IT - Director, Vodafone Portugal

The Service Profiler’s most fundamental job is to collect
raw execution data about Integration Services. The
nature of this data includes: execution elapsed times,
execution CPU times, number of times called, number
of exceptions raised, and execution path.

Around this core functionality of gathering raw data
other functionalities emerge on areas of
administration/configuration, data analysis
(dashboards) and extensibility. These functional areas
respectively aim to control tool behaviour, translate
the raw data into meaningful information and to allow
processing of collected data by external tools.

Start and Stop — command whether the Service
profiler is actively collecting data or not.

Browse Snapshot— is a dashboard analysis tool that
shows the execution paths of all collected services as
nodes in an execution tree. Each node can be selected
to view its detailed information.

Browse Running Services — regular snapshots return
data about the services that have already returned or
completed. When there is one or more Services taking
a long time to complete it is useful to be able to take a
peek at what is happening. This functionality lists the
threads that are currently running services with
execution paths spanning from them as trees similar to
those viewed by Browse Snapshot. The currently
executing Service and those currently on the call-stack
are identified. Detail information about each service in
the tree can be viewed by selecting its corresponding
node.

Freeze Snapshot — information processing is based on
snapshots taken on request. Each dashboard and
export requests a new snapshot every time they are
called. However, analysis of the data with multiple
analysis tools and export is useful without the noise of
having it refreshed every time it is viewed. For this
purpose the snapshot can be frozen. And in this state
the data collecting is kept running but every time a

snapshot is requested a frozen one is returned. When
the data collecting is Stopped, a snapshot is frozen so
that the tool can be used to work on the latest known
snapshot.

View Per Service — on this analysis tool the execution
data is presented in a tabular form, accumulated per
service, independently of where the service was called
from or which service(s) it in turn called. The table can
be sorted by any column, some filters can be defined to
exclude unimportant data, and a drilldown on a
selected service can be made into the Browse Snapshot
dashboard, highlighting the nodes for that Service.

Code Coverage — it shows the ratio of services
executed against the number Services defined in each
Integration Server Package. It can help to determine if
the Service distribution into packages is balanced with
their execution profile.

Export — a data snapshot can be exported as a file in
CSV or XML format.

Package Exclusion Patterns — on an Integration Server
there are packages from several sources including
webMethods and 3rd party. Because all running
services contribute to the overall performance of the
server, none of them is discarded of filtered out from
data gathering. However, not all of them need to be
shown in the dashboard pages, mainly because no
Refactoring can be attempted over them. This filtering
is defined with Regular Expressions over the package
name. 

Available on the following
Operating Systems

 Windows 2000 & XP

 Windows Server 2003

 Sun Solaris

 HP-UX

 Linux

Wrightia is an integration company
and a webMethods partner, with
customers around Europe.

For more information about Service
Profiler, please contact our sales
oficce using:

sales@wrightia.com
+351 214 259 827

Different environments different needs

“Time is Money” is a fairly common saying in the busi-
ness world. While the usage of the Service Profiler per
se does not imply that the services run faster, it allows
saving time in tasks that are themselves dedicated to
overcome factual or potential points where time could
be at waste. These tasks are usually of diagnostics,
testing and monitoring.

While in a Development environment, profiling can
help fine tuning the specific artefacts to comply to
performance requirements to guarantee that they will
not be a bottleneck.

Once in a Testing environment, with data loads and
runtime environment closer to production specifica-

tions, Service Profiler allows testers to more easily
measure execution times against requirements or SLAs
established by business rules. When unacceptable exe-
cution times are then witnessed, the breakdown re-
porting of a Service Profile cuts short the diagnosis and
identification of the performance culprit or culprits.

In a Production environment the Service Profiler can be
a valuable asset for reactive monitoring, enabling a
quick and effective live performance analysis to be
carried out, without changing a line of code or restart-
ing the Integration Server. Once installed you can keep
the Service Profiler dormant, without any impact on
your Production system, until you actually need it.

The Service Profiler was designed to help you fine tune your applications

